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Abstract Keywords 
In the first part of the article, one-dimensional (1D) pure 
scattering processes were taken into detailed consideration. It 
allowed to prove that the scattering coefficient is not just a real 
optical property of a turbid medium, but also is a parameter of 
the mathematical description of the problem. It depends on 
the approximation, which is applied to solve the problem. 
Therefore, in different approaches it can vary. More real and 
close to realistic practical problems are scattering problems 
with absorption. This second part of the article describes the 
1D scattering problems with absorption. It is shown, that 
scattering and absorption processes inside the light-scattering 
medium are not independent in most cases, so a formulation 
of the first coefficients of initial differential equations, which 
mathematically describe the problem, as the simplest superpo-
sition of scattering and absorption coefficients is wrong. Inac-
curacy in this formulations leads to inaccuracies in final re-
sults. More correct formulation, for example, in application to 
the classical two-flux Kubelka —  Munk (KM) approach, 
which is a good 1D limit for the radiative transport equation, 
allows one to obtain the exact analytical solution for boundary 
radiant fluxes (backscattered and transmitted ones), contrary 
to the classic KM approximation. In addition, it leads to the 
need for revision of definitions of a number of basic terms in 
the general radiative transport theory, especially of the albedo, 
which plays a key role in Monte-Carlo simulations 
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Introduction. As previously, we will consider only stationary, time-independent 
problems, because they are exactly the fundamentals of the phenomenological light 
transport and scattering theory (LT&ST). Also, we will use the same 1D model of the 
scattering medium with a number of discrete optical heterogeneities inside the 
medium. The study described in this second part of the article was aimed at finding 
answers to the problem, how we can use our previously obtained results on the 
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scattering coefficient definition in different cases of scattering with absorption. In 
most cases, the interaction of light with turbid media can mainly be characterized by 
two phenomena: absorption and scattering. However, the distinction between 
absorption and scattering is not always clearly understood from 1D differential 
transport equations, which mathematically describe the problem. It is by far the most 
important problem, in our opinion. In elastic scattering no energy loss occurs in the 
scattering process, and scatterers are fundamentally distributed discretely inside a 
light-scattering medium. At the same time, the absorption reduces the flux energy, 
but the type of a distribution of absorbers inside the medium (continuous or discrete) 
between scatterers, as it was shown in the introduction to the first part of the article 
[1], does not matter. Are the definitions of the scattering coefficient previously 
obtained applicable in this complex situation?  

Scattering 1D problem with absorption. Now we are ready to complicate our 
approach and to solve the scattering problem when absorption of radiation in each 
interval between heterogeneities inside the medium exists. For a simplicity, let us 
assume that all intervals between heterogeneities are of the same length h (thickness), 
i. e., they are spread uniformly inside the medium, and all of the intervals (substances 
in the interval) have the same identical coefficient of absorption —  a. Also, let the 
first and the last heterogeneities are located at the distance of h/2 from the external 
borders of the medium to have together the length h. Scattering in the medium is 
simulated as previously by infinitely thin reflecting borders of heterogeneities r1, r2, ..., 
rn. Figure 1 illustrates the model.  

Fig. 1. Model of 1D scattering media with absorption 
 
This model is a good approximation of biological tissue with sufficiently large 

heterogeneities. Such models have long been known in physics and optics as pile 
models by Stokes [2]. Benford [3, 4] also published a detailed analysis of the 
absorption and scattering using assumption that the sample was divided into a series 
of plane parallel layers. In contrast to the Stokes problem, which considers a pile of 
thick plates, infinitely thin reflecting heterogeneities, which are included in a one 
thick plate, are considered in our model. In addition, in contrast to the Stokes 
problem, reflection from external boundary of the medium is neglected, because the 
borders are considered rough (friable) [5]. Rough external borders correspond well to 
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coarse surface of biological tissue or to a surface of powdered materials. Reflection 
from such surfaces is negligible as compared to backscattered radiation. Indeed, for 
the 1D model, the term ''rough external border'' is arbitrary. Most of all, it is suitable 
for 2D and (or) 3D problems. Nevertheless, here it is used for the sake of physical 
illustration, to highlight and to ''justify'' the lack of reflection at external borders. We 
have also to note, that the uniform distribution of all heterogeneities inside the 
medium does not reduce the theoretical generality of the problem. It can be shown 
that at any random distribution of the thicknesses of intervals h inside the medium, 
the statistically averaged outputs for backscattered and transmitted fluxes will be the 
same [6].  

Single scattering approximation. Once again, we would like to start with the single 
scattering approximation (SSA). At SSA, the forward radiant flux F+(x) is scattered 
and absorbed along its path, but the backward flux F−(x) being formed can be only 
absorbed. Classic two-flux approach dictates for this scheme the coupled system of 
the linear differential equations as follows: 

 
1

2

( ) ( );

( ) ( ) ( ),

dF x F x
dx

F x KF x F x
dx

 (1) 

where 1  is the extinction coefficient due to the scattering and absorption, 2  is the 
unknown yet scattering (backscattering) coefficient that forms the backward flux 
F−(x), and K  a is the absorption coefficient. Here, for the backward flux F−(x) we 
can directly accept the equation K  a, since the absorption occurs between 
inhomogeneities, and the secondary scattering is absent, i. e., for the F−(x) our 1D 
medium at SSA is not a turbid medium, just an absorptive one like it was considered 
in the introduction. 

Usually, in the classic radiative transport equation (RTE) by default it is assumed 
that: 

 1 2   and   ,K S S  (2) 

This linear superposition for 1 is the common a-priory heuristic assumption in 
LT&ST. Could be it proved rigorously? Direct calculation of the decrement of the 
forward flux inside x yields:  

 ( ) ( ) ( )(1 ) aN xF F x x F x F x R e  

 ( ) ( ) (1 ) 1 .ax xF x F x R e  (3) 

Therefore, the differential of the forward flux is: 

 
0

( ) lim ( ) ln(1 ) ( ) ( ),a
x

dF x F F x R K S F x
dx x

 (4) 
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where we see the appearance of the scattering coefficient S in the form of Eq. (22), 
part 1 [1], for SSA. Nothing has changed for it yet. Moreover, the linear superposition 
Eq. (2) for 1 can be considered as proven at the presence of absorption for SSA.  
It yields the known solution: 
 ( )

0( ) ,K S xF x F e  (5) 
where K = a and ln(1 ).S R  The function remains exponential.  

Classic result for F−(x) can be derived from the second equation of the system (1). 
With the use of Eq. (5), the second equation is the inhomogeneous first-order linear 
constant coefficient of ordinary differential equation of the form: 

 ( ) ( ) ( ),df x Kf x g x
dx

 (6) 

solution of which can be obtained as a product of two functions ( ) ( ) ( )f x u x v x  at 

( ) Kxv x e and ( )( ) .
( )

g xu x dx C
x

 Constant C can be determined from the boundary 

condition F−(H0) = 0. Therefore: 

 00 2 (2 ) (2 )( ) .
2

Kx
K S x K S HF eF x e e

K S
 (7) 

Using Eq. (7), one can write the backscattered flux FBS as follows: 

 02 0 (2 )(0) 1 .
2

K S H
BS

FF F e
K S

 (8) 

Now we need to determine 2 through real physical properties of the medium —  
a, , R, H0. Consider the direct calculation scheme for the increment of F−(x) inside 
x as shown in Fig. 2.  

Fig. 2. Formation of the increment of F−(x) inside x 
 

Note, that in this way 
( 1)

12( ) ( ) (1 ) .a a
x x i

iN NiF F x e R e   It forms the series 

of F−(i) as follows: (1) ( ) ;a
x

NF F x e R  
3

(2) ( ) (1 );a
x

NF F x e R R  (3)F  
5

2( ) (1 ) ;a
x

NF x e R R  … etc., which is the usual decreasing geometrical 
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progression. In addition, F−(x) is formed by the term ( ) .a xF x x e  So, the total 
F−(x) is determined by the sum: 

 
2

2

1 (1 )( ) ( ) ( ) .
1 (1 )

aa a

a

x N x
xN

x
N

R eF x F x e R F x x e
R e

 (9) 

Here N x  is the total number of heterogeneities inside x. Therefore:  

 
/

2 /0

( ) ( ) ( ) ( 2 )lim ( ) ( ).
1 (1 )

a

a
a

a
x

dF x F x x F x R S eF x F x
dx x R e

 (10) 

Comparing Eq. (10) and the second equation of the system (1), we found out 
that: 

 
/

2 2 /
( 2 ) .

1 (1 )

a

a
aR S e

R e
 (11) 

Thus, the second assumption in Eqs. (2) is wrong! It becomes true as an extreme 
case only if a  0, so the second expression in Eqs. (2) is the particular case of the 
Eq. (11). Once again, we see that the ''scattering coefficient'', in this instance it is 2, 
gives for us unexpected result and takes a new form, depending on the mathematical 
formulation of the problem. Moreover, in this example 2, which forms and enhances 
F−(x), is not equal to S, which reduces F+(x). The ratio 2 /S as a function of a /  is 
shown in Fig. 3. One can see, that always 2 < S. It means that the radiation 
transformed into the F−(x) is smaller than the radiation backscattered from F+(x). Part 
of the scattered radiation is absorbed directly inside x. What is also important, 
comparing Eqs. (7) and (5) one can found out the difference in the exponential 
attenuation. Forward flux F+(x) is reduced faster. 

Fig. 3. The ratio 2 /S as a function of the parameter a /  

Multiple scattering approach. Indeed, the most interesting case is the case of 
multiple scattering. The system of ordinary linear differential equations describing the 
multiple scattering at the presence of absorption is the system of the coupled 
equations: 
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1 2

1 2

( ) ( ) ( );

( ) ( ) ( ).

dF x F x F x
dx
F x F x F x

dx

 (12) 

Under assumptions  

 1 2( )   and    ,K S S   (13)  

this system is well-known as the Kubelka —  Munk (KM) system [7, 8]. However, it is 
obvious now, that we should be careful with these assumptions (13). We have seen, 
that the first assumption is valid at single scattering if to define 

 ln(1 ),S R  (14) 

as it was obtained at SSA in the first part of the article (see Eq. (22) [1]), but the 
second one is also valid for the situation, when absorption is very small, close to zero. 
Once absorption becomes significant, the Eq. (11) should be used for 2 at SSA.  

In the general case for 1 ≠ 2 (the case when 1 = 2 is identical to Eqs. (23),  
part 1 [1]), the solution of the system (12) is known:  

 1 2( ) ;x xF x C e C e  1 2( ) ,x xF x C A e C A e  (15) 

where C1 and C2 are integration constants determined from boundary conditions, 
2 2
1 2 ,  2 1/( ),A 1/ .A A  This is the standard, well-known, pure 

mathematical result of the integration of the system (12). To establish the physical 
meaning of the scattering coefficient, it is necessary to determine 1 and 2 through 
the optical properties of the turbid medium.  

As previously, we need to consider two different cases (two subcases) — SSA 
inside x and multiple scattering over the whole medium in a macroscopic sense, and 
MSA directly inside x. The first case, as we have got already in the section Single 
scattering approximation, is described by equations: 

 
1

/

2 2 /

;       
ln(1 );

( 2 ) .
1 (1 )

a

a

a

a

S
S R

R S e
R e

 (16) 

The case 2 ln(1 )R  instead of the last equation in (16) can be taken into 
consideration, as well. However, the Fig. 3 immediately explains for us, that this way 
will lead just to the enhanced backscattered flux if to compare with Eqs. (16), not 
more. Merely, in this case some part of the absorbed radiation inside x on its 
conversion way to a backward flux will not be taken into account. We have to 
highlight here, that we come to a very important result. In the general case, absorption 
of radiation inside x is determined by a subtraction  = 1 − 2 [9], which is not 
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always equal to a (!). Since 2 is less than S, absorption in the case of Eqs. (16) will be 
determined not only by a, but also by scattering properties of the turbid medium, 
such as R,  , etc.  

The case of multiple scattering inside x is more complex. In this case (the most 
general case of 1D problems), rigorous analytical solutions for parameters 1 and 2 
was derived as follows [10]:  

 
2 /2 2

1
2 /2 2

ln(1 ) ln(1 ) ;
a

a

a R R e
R e

 (17a) 

 
2 /2 2

/
2

2 /2 2

ln(1 ) ln(1 ) ,
a

a

a

a R R eRe
R e

 (17b) 

where we denoted 
2 /1 (1 2 ) .

2

aR e  Once again, one can see, that SSA and 

MSA inside x lead to different results for the scattering coefficient 2, as well as for 
the extinction coefficient 1. Moreover, Eqs. (17a), (17b) turn out to be the most 
general case of equations among all previously obtained results. For example, for the 
medium without absorption ( a = 0) their extreme values are:  

 1 2
0 0

lim lim ,
1a a

m
R
R

 (18) 

that corresponds well with the Eq. (36), part 1 [1]: 

 .
1

RS
R

 (19) 

In the case of R = 0 (pure absorption), 2 = 0, and 1 = a = K, and so on. Eqs. 
(17a), (17b) prove, that in general in the LT&ST there are a number of tasks where we 
cannot separate absorption and scattering coefficients (K and S in the KM notations 
and a and s in the RTE notations) in the extinction coefficient 1. Such a separation 
and assumption of validity of Eqs. (13) is a direct consequence of the accepted 
phenomenological formalism about independence of absorption and scattering 
processes. It was not proved previously, just theoretically assumed and accepted. 
However, now it can be rigorously proved that absorption and scattering processes 
are not independent. We cannot write a decomposition 1 2 ,a  or  1 ,K S  
because it follows from (17a), (17b), that: 

 
/

1 2.
ae

R
 (20) 

It comes into operation the so-called in photometry (and quite forgotten today) 
Photometric Invariant ''J'', introduced by Gurevich [11]:  
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2 2

0 0

0

1 ( / ) ( / ) const,
2( / )

BS

BS

F F F F J
F F

 (21) 

where J is the Gershun —  Gurevich invariant, which is independent on thickness of 
the medium of light propagation and reflects native optical properties of x. It can be 
easily shown, for example, using the simplest solution of the system (12) together with 
Eqs. (17a) and (17b) for semi-infinite medium when F  = 0, that in our 1D scattering 
model: 

 
/

1

2
.

aeJ
R

 (22) 

Professionals on LT&ST know the broad accepted opinion that there is not a 
direct accordance between coefficients of KM equations and similar coefficients of the 
RTE. This problem has been discussed for a long time [12−16], and remains still a 
subject of disputes [10, 17−20]. As the main consequence of simultaneously appeared 
and, likely, independent publications by Mudgett and Richards [11] and by 
Brinkworth [15], there is, for example, the well-known result that the relationship 
between K and S, on the one hand, and a and s, on the other hand, should be 
written as follows: 

 2 ;aK  3 .
4 s aS  (23) 

However, if the second Eq. (23) needs 3 ,
4a s  that is usually explained as a 

necessity to have the strong-scattering conditions for the KM approach applicability, the 
first Eq. (23) in the case of a small scattering looks more dramatically, because it does not 
contain any dependences on .s  In the case of vanishingly small scattering  
( s   0) both KM and 1D RTE equations should have the identical exponential 
attenuation of light fluxes as the solution of equations. Exponential attenuation cannot 
differ in two times for the same problem, so, ether K = a and the first equation (23) is 
wrong, or K is the unknown function of s with such properties as follows: if s = 0, then 
K = a, but if s  0, then K aspires to 2 a at s > a. Having Eqs. (17a), (17b), we can give 
now the more accurate and reasonable answer: K = a  as an electrical property of the 
non-scattering substance of a medium, 1 K S  and  1  is  a complex function of real 
optical properties of the scattering media, depending on the mathematical formulation of 
the problem, 1 2 a  in the general case, etc. The wrong understanding of all this 
statements leads to errors in numerical calculations. 

As the visual example, let us consider the following case of the turbid medium. 
Let amount of heterogeneities inside the medium is N = 3. Also, let Н0 = 1.5 cm;  
R = 0.4; and a = 0.5 cm–1 [10]. Figure 4 demonstrates forward and backward fluxes 
computed on the basis of different scattering models. As the exact reference result, we 
used direct photometric calculations of forward and backward fluxes in the n-layer 
plane pile [21].  
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As it follows from the Fig. 4, strictly speaking, none of approximate approaches 
used describes the exact reference result. Functions of fluxes obeying the reference 
exact solution are not contiguous function inside the medium, and undergo 
attenuation jumps at heterogeneities, so finding indefinite derivatives in such 
breaking points of the first order. As they are not differentiable, they cannot be 
described by the system of linear differential equations (12). Radiation flux 
distribution inside the medium in this model has the piecewise continuous (stepwise) 
character. Therefore, the KM approach has no accurate solution regardless of medium 
parameters, because this method operates with fluxes having definite first and second 
derivatives. Nevertheless, if N is large ( ),N  any piecewise continuous function 
would tend to a smooth one. Thus, all approaches above used allow us to describe a 
smooth approximation of fluxes with their numerical values close to the exact ones on 
external boundaries of the medium only. This is the theoretical basis of all 
measurements of transmitted and (or) backscattered fluxes in LT&ST. What is the 
most important here — it is the fact, that the offered approach with MSA directly 
inside x gives the results, perfectly coinciding with the reference exact solutions on 
external boundaries of the medium. There are no differences in these quantities at all! 
Therefore, we can claim that we found out the exemplary exact analytical solution for 
boundary fluxes using the smooth approximating system (12). Due to the boundary 
fluxes are the measured quantities, this result is of the great practical interest.  

Fig. 4. Forward and backward fluxes computed on the basis of different scattering models 
(reference exact solution — broken solid line; offered approach based on Eqs. (12), (17a) and 
(17b) with MSA inside x — circles: offered approach based on Eqs. (12) and (16) with SSA 
inside x — rectangles. Mixed approach of independent scattering and absorption with  
                                               1 2a  and 2 /(1 )R R  —  triangles) 

Revised optical properties. Summation and analysis of all results obtained takes 
us on the new level of understanding of optical properties definitions and their 
meaning in LT&ST. It shows that there are a number of incorrect-understandable 
items and definitions, as, for example, the scattering coefficient (S or s — the 
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notation does not matter here). As we saw, it is not a real optical property of turbid 
media, but is an effective parameter of approximation models. It differs for MSA and 
SSA, depending on the presence of absorption inside the medium. At least, four 
different scattering coefficients — Eqs. (14) and (19) (see the same Eqs. (22) and (36) 
in the first part of the article [1]), Eq. (11), and Eq. (17b) — have been derived for four 
different cases of the 1D scattering problem. Which coefficient is correct? The only 
answer is: all of them, each in its case. Therefore, likely, there is not any sense to select 
one of them as the original (prime) coefficient. Nevertheless, we would like to suggest 
the coefficient given by Eq. (14) as the original one. The case of Eq. (19) is too perfect 
(without absorption) for a practical usage. Cases of Eqs. (11) and (17b) are too 
complex. Moreover, Eqs. (11) and (17b) contain the scattering coefficient given by  
Eq. (14) as their part, as well as the scattering coefficient by Eq. (14) forms the 
exponential attenuation law at SSA (see Eqs. (5), (7) and (16)). Thus, it plays the 
leading role in a formation of the radiation fields scattered, so it can be considered as 
an initial scattering coefficient if such a selection has a meaning. 

Another parameter is a. In spite of its undeniable role of the absorption 
coefficient of the medium substance, the fraction of the absorbed radiation within the 
medium is determined not only by it, but also by the presence of scattering [15]. In 
most cases of multiple scattering  1 2 .a  It is true for SSA only. Therefore, if, for 
example, we solve the problem of induced by external radiation fluorescence inside 
the turbid medium [21, 22], then at computation of the absorbed part of excitation 
radiation inside x to calculate the fluorescence emission we can get a small error due 
to 1 2 .a  Factor  

 1 2 2 ( 1)a
a a

J  (24) 

is only a function of R and / ,a  so it can be presented in relative units. Figure 5 
demonstrates possible errors. They can reach 10…12 % in a number of cases. For 
dielectric biological tissues typical R is 0.02…0.05. In these cases, the error is about a 
one percent — not so much, but nevertheless. 

Fig. 5. Errors in classical calculation of absorption inside x based on a 
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Along with it, the single-scattering albedo (W0) should be considered, as well. 
Standard definition of the albedo is [8]: 

 0 ,s

a s
W  (25) 

where a s  usually is considered as the attenuation coefficient, i. e., as the first 
coefficient in the right-hand side of RTE. However, it is not exactly so, in our opinion. 
One can note, that the equation (25) also can be written as follows: 

 0 .
( )

s

a s s s
W  (26) 

It means that there are two events: scattering and absorption. Albedo is a fraction 
of scattering. Scattering is determined by ,s  i. e., by the second coefficient of 
differential equations, but absorption is determined by the difference ( ) ,a s s   
i. e., by the attenuation coefficient minus the scattering one. Not by pure a. 
Generally, it corresponds to our 1 2.  Therefore, in our approach we have to 
write:  

 2 2
0

1 2 2 1

1 .
( )

W
J

 (27) 

Thus, albedo is the simplest inverse quantity to the Gershun —  Gurevich 
invariant Eq. (21). It is very interesting result! To understand better the difference 
between classic definition of albedo and Eq. (27), several numeric examples are 
presented in Fig. 6. We compared W0 given by Eq. (27) and the following two 
variants: 

 1
ln(1 ) ;

ln(1 )a

RW
R

   2
/(1 ) ,

/(1 )a

R RW
R R

 (28) 

which reflect Eq. (26) in different scattering coefficient definitions, close to the classic 
one. 

Once again, we obtained small differences in numerical values depending on 
original optical properties of the turbid medium. In addition, albedo is broadly used 
at Monte Carlo simulations to evaluate a probability of scattering. More rigorous 
definition Eq. (27) can affect the results of the Monte-Carlo statistical computation 
[23]. In general, these differences are not so dramatic for a practice, but are 
fundamental for us in a theoretical sense.  

Conclusion. The study described in this second part of the article was aimed at 
finding answers to the problem, how can we use our previously obtained results on 
the scattering coefficient definition in different cases of scattering with absorption. It 
was shown, that scattering and absorption processes inside the light-scattering medi-
um are not independent in most cases, so a formulation of the first coefficients of ini-
tial differential equations, which mathematically describe the problem, as the simplest 
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superposition of scattering and absorption coefficients is wrong. Inaccuracy in this 
formulations leads to inaccuracies in final results. More correct formulation in appli-
cation to the classical two-flux Kubelka —  Munk (KM) approach, which is a good 1D 
limit for the radiative transport equation (RTE), allows one to obtain the exact analyt-
ical solution for boundary radiant fluxes (backscattered and transmitted ones), con-
trary to the classic KM approximation. These fluxes are registered by diagnostic 
equipment in experiments, especially in biomedical applications [24], so this result is 
very important for the practical usage. 

 In addition, this result leads to the need for revision of definitions of a number of 
basic terms in the general radiative transport theory, especially of albedo, which plays 
a key role in Monte-Carlo simulations. It was obtained in the study, that albedo is the 
simplest inverse quantity to the Gershun —  Gurevich invariant (Eq. (21)) under the 
correct definition. More rigorous definition for albedo (Eq. (26)) can affect the results 
of the Monte-Carlo statistical computation. In general, these differences are not so 
dramatic for a practice, but are fundamental for us in a theoretical sense. 

Indeed, much more real and close to realistic practical problems are spatial two-
dimensional (2D) or three-dimensional (3D) scattering models. Development of all 
our ideas and approaches to solve some 2D problems opens also the way to have a 
new look at several nuances of formulation of the 2D or 3D initial transport 
equations. We will consider them in the third part of the paper. 

Next part is expected to be published in issue 2, 2018. 
 

Fig. 6. Ratios of numerical values for different definition of albedo 
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