(English versions only, Russian papers - see the Russian version of the website)

1. Some archive publications before 2009 (Top 10).

1.1. Rogatkin D.A., Prisnyakova O.A., Moiseeva L.G., Cherkasov A.C. Analysis of the accuracy of clinical laser fluorescence diagnosis // Measurement Techniques, Vol. 41, No. 7, 1998. – p. 670-674. (PDF, 341K).

1.2. Hachaturian G.V., Rogatkin D.A. Methods of Moments in Calculation of the Autofluorescence of Biological Tissues // Optics and Spectroscopy, v.87, No. 2, 1999. – p.240 -246. (PDF, 2195K) or as a version of SPIE Proc. publication (PDF, 921K )

1.3. Rogatkin D.A. An approach to the solution of multidimensional problems of the theory of light scattering in turbid media // Quantum Electronics, 31(3), 2001. – p. 279-281. (PDF, 1095K)

1.4. Rogatkin D.A., Lapaeva L.G., Prospects for development of noninvasive spectrophotometric medical diagnosis // Biomedical Engineering, vol. 37, No. 4, 2003. – p. 217-222. (PDF, 116K)

1.5. Rogatkin D.A. Basic principles of organization of system software for multifunctional noninvasive spectrophotometric diagnostic devices and systems // Biomedical Engineering, Vol. 38, No. 2, 2004. – p. 61-65. (PDF, 90K)

1.6. Rogatkin D.A. Scattering of electromagnetic waves by a randomly rough surface as a boundary problem of laser radiation interaction with light-scattering materials and media // Optics and spectroscopy, Vol. 97, No. 3, 2004. – p. 455-463. (PDF, 73K)

1.7. Tchernyi V.V., Rogatkin D.A., Bychenkov O.A., Polyakov P.Yu. Some results of multiwave in situ autofluorescence diagnostics // Proc. SPIE, vol. 5693, 2005. – p. 336-343. (PDF, 601K).

1.8. Tchernyi V.V., Rogatkin D.A., Gorenkov R.V., Karpov V.N., Shumskiy V.I., Lubchenko P.N. Complex noninvasive spectrophotometry in examination of patients with vibration disease // Photonic Therapeutics and Diagnostics II / SPIE Proc., 2006, v.6078. – p.363-370. (PDF, 265K)

1.9. Lapaeva L. G. and Rogatkin D. A. Improved Kubelka-Munk approach for determination of tissues optical properties in biomedical noninvasive reflectance spectroscopy // Proc. SPIE, Vol. 6536, 2007, 65360Z. (PDF, 206K

1.10. Rogatkin D.A. A specific feature of the procedure for determination of optical properties of turbid biological tissues and media in calculation for noninvasive medical spectrophotometry // Biomedical engineering, v.41, No. 2, 2007. – p.59-65. (PDF, 286K)

(see our Russian publications in the Russian version of the website)

2. Books and chapters in books.

2.1. Rogatkin D.A. and Gilinskaya N.Yu. Selected problems of physics for physicians. - Moscow: "MedPress-inform", 2007. - 112 pages (in Russian). (PDF, 1.2M)
2.2. Rogatkin D.A., Kulikov D.A., Glazkov A.A. Diagnostic Significance of LDF-Based Methods of Non-Invasive Assessment of Microcirculation in Diabetes Mellitus. - NOVA Science Publishers, Inc.: Advances in Health and Disease, Vol. 7, Chapt. 5, 2018. - p. 177-203. (PDF, 545K)

3. Articles in reviewed international journals and proceedings of conferences.

3.1. Rogatkin D.A., Lapaeva L.G., Petritskaya E.N., Sidorov V.V., Shumskiy V.I. "Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that" // Proc. SPIE, vol. 7368, 2009, 73681Y. (PDF, 369K).

3.2. Rogatkin D.A., Bychenkov O.A., and Lapaeva L.G. The accuracy, reliability, and interpretation of the results of in vivo laser fluorescence diagnosis in the spectral range of the fluorescence of endogenous porphyrins // J. Opt. Tech., 76(11), 2009. - p. 708-713. (PDF, 139K).

3.3. Rogatkin D.A., Lapaeva L.G., Petritskaya E.N. Diagnostic volume phenomenon in noninvasive medical spectrophotometry and a simple theoretical definition of that // Proc. of PIERS’2009 Symposium, August 18-21, Moscow, Russia, 2009. -  p.1762-1765. (PDF, 309K).

3.4. Rogatkin D.A., Tchernyi V.V. Revised optical properties of turbid media on a base of general improved two-flux Kubelka-Munk approach // Abstracts of PIERS’2009 Symposium, August 18-21, Moscow, Russia, 2009. -  p.381. (PDF, 194K).

3.5. Rogatkin D.A., Dunaev A.V., Lapaeva L.G. Metrological providing for methods and devices of non-invasive medical spectrophotometry // Biomedical Engineering, Vol. 44, No. 2, 2010. – p. 66-77. (PDF, 265K).

3.6. Litvinova K.S., Rogatkin D.A., Bychenkov O.A., Shumskiy V.I. Chronic hypoxia as a factor of enhanced autofluorescence of endogenous porphyrins in soft biological tissues // Proc. SPIE, Vol. 7547, 2010. – 7547-0D. (PDF, 142K).

3.7. Rogatkin D. A., Sokolovski S. G., Fedorova K. A., Stewart N. A., Sidorov V. V., Rafailov E. U. Basic principles of design and functioning of multifunctional laser diagnostic system for non-invasive medical spectrophotometry // Proc. SPIE, Vol. 7890, 2011. - 78901H. (PDF, 251K).

3.8. Rogatkin D.A., Shcherbakov M.I., Makarov D.S., Bychenkov O.A. Thermal-vision monitoring of processes of heating and microcirculation of blood accompanying low-intensity laser therapeutic procedures // J. Opt. Tech., Vol. 78, No.10, 2011. - pp. 666-671. (PDF, 920K).

3.9. Smirnova O.D., Rogatkin D.A., Litvinova K.S. Collagen as in vivo quantitative fluorescent biomarkers of abnormal tissue changes. // Journal of Innovative Optical Health Science, vol. 5, No.2, 2012. - 1250010 (9 pages). ( PDF, 775K)

3.10. Rogatkin D. A., Lapaeva L. G., Bychenkov O. A., Tereshchenko S. G., Shumskii V. I. Principal Sources of Errors in Noninvasive Medical Spectrophotometry. Part 1. Physicotechnical Sources and Factors of Errors // Measurement Techniques, Vol. 56, No. 2, 2013. - pp. 201-210. (PDF, 232K)

3.11. Rogatkin D. A., Lapaeva L. G., Bychenkov O. A., Tereshchenko S. G., Shumskii V. I. Principal Sources of Errors in Noninvasive Medical Spectrophotometry. Part 2. Medicobiological Factors of Errors // Measurement Techniques, Vol. 56 , No. 4, 2013. - pp. 455-463. (PDF, 188K<s/trong>

3.12. Rogatkin D.A., Smirnova O.D. Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis // J. Opt. Tech., Vol. 80, No. 9, 2013. - pp. 566-570. (PDF, 1700K).

3.13. Rogatkin D., Shumskiy V., Tereshenko S., Polyakov P. Laser-based non-invasive spectrophotometry - an overview of possible medical application // Photonics & Laser in Medicine, Vol. 2, No. 3, 2013. - p. 225-240. (PDF, 1626K)

3.14. Dunaev A.V., Zherebtsov E.A., Rogatkin D.A., Stewart N.A., Sokolovski E.U. Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices // J. of Biomedical Optics, Vol.18(10), 2013. – 107009 (9 pages).  (PDF, 1138K)

3.15. Kulikov A.V., Arkhipova L.V. et al. Study of the Accidental Thymus Involution during the Formation of Hierarchic Communities by a Novel Physical Method for Recording the Social Stress. // Biophysics, v.58, No.6, 2013. - p.837-840. (PDF, 100K)

3.16. Rogatkin D.A., Dunaev A.V. Stimulation of Blood Microcirculation at Low Level Laser Therapy: Monitoring Tools and Preliminary Data // Journal of Medical Research Development, Vol. 3, No. 1, 2014. - pp. 100-106. (PDF, 713K)

3.17. Rogatkin D.A., Dunaev A.V. Is there a stimulation of blood microcirculation at Low Level Laser Irradiation? // Proc. SPIE, Vol. 9129, 2014. – 912922. (PDF, 1403K)

3.18. Lapitan D.G., Rogatkin D.A. Evaluation of the Doppler component contribution in the total backscattered flux for noninvasive medical spectroscopy // Proc. SPIE, Vol. 9129, 2014. -  91292X. (PDF, 363K)

3.19. Rogatkin D., Guseva I., Lapaeva L. Nonlinear Behavior of the Autofluorescence Intensity on the Surface of Light-Scattering Biotissues and its Theoretical Proof // Journal of Fluorescence, v.25(4), 2015. - pp. 917-924. (PDF, 1230K)

3.20. Antsiferova A.A., Buzulukov Yu.P., Demin V.A., Demin V.F., Rogatkin D.A., Petritskaya E.N., Abaeva L.F., Kashkarov P.K. Radiotracer methods and neutron activation analysis for the investigation of nanoparticle biokinetics in living organisms // Nanotechnologies in Russia, v.10, No.(1-2), 2015. - p.100-108. (PDF, 365K)

3.21. Kotov S.V., Kuchina N.V., Lapitan D.G., Milanich A.I., Rogatkin D.A., Iakushina T.I., Riabtseva A.A., Anriukhina O.M. Low contrast non-color vision in patients with multiple sclerosis // Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 2015, v.115, No.2-2, p.16-20.

3.22. Petritskaya E.N., Kulikov D.A., Rogatkin D.A., Guseva I.A., Kulikova P.A. Use of fluorescence spectroscopy for diagnosis of hypoxia and inflammatory processes in tissue // J. Opt. Technol., v.82, No.12, 2015. - p.810-814. (PDF, 1130K)

3.23. Lapitan D.G., Rogatkin D.A. Variable hyperemia of biological tissue as a noise source in the input optical signal of a medical laser Doppler flowmeter // J. Opt. Technol., v.83, No.1, 2016. - p.36-42. (PDF, 489K)

3.24. Rogatkin D., Lapaeva L., Lapitan D. Substantiation of the Required World Model Configuration for Autonomous Mobile Medical Service Robots // Proc. of the 9th Int. Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016), v.1: BIODEVICES, 2016. - p.125-130. (PDF, 461K)

3.25. Guseva I., Rogatkin D., Kulikova P. and Kulikov D. In Vivo Experimental Detection of Inflammatory Process in Tissues by Fluorescence Spectroscopy // Proc. of the 9th Int. Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016), v.1: BIODEVICES, 2016. - p.139-144. (PDF, 682K)

3.26. Lapitan D.G., Rogatkin D.A. Improved two-channel laser Doppler flowmeter // IEEE Xplore: Proceedings of 2016 International Conference Laser Optics, LO 2016, 7549973, p. S2-6. (PDF, 62K)

3.27. Tarasov A.P., Guseva I.A., Rogatkin D.A. Inaccuracy of the classical Monte-Carlo simulation in the general case of 1D turbid biological media // IEEE Xplore: Proceedings of 2016 International Conference Laser Optics, LO 2016, 7549991, p. S2-24. (PDF, 272K)

3.28. Guseva I.A., Tarasov A.P., Rogatkin D.A. New form of the transport equation for the case of 2D orthogonal scattering approximation in biooptics // IEEE Xplore: Proceedings of 2016 International Conference Laser Optics, LO 2016, 7549990, p. S2-23. (PDF, 455K)

3.29. Lapitan D., Rogatkin D., Persheyev S., Rogatkin A. New Simple Phenomenological Model for Laser Doppler Measurements of Blood Flow in Tissue // Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) - vol.1, BIODEVICES, 2017. - p.98-103. (PDF, 421K)

3.30. Ivlieva A.L., Petritskaya E.N., Rogatkin D.A., Demin V.A. Methodological characteristics of the use of the Morris water maze for assessment of cognitive function in animals // Neuroscience and Behavioral Physiology, v.47, No. 4, 2017. - p.484-493. (PDF, 213K)

3.31. Lapitan D.G., Rogatkin D.A., Tarasov A.P. Model of Doppler scattering with variable blood volume in laser Doppler flowmetry // Proc. SPIE, Vol. 10417, Medical Laser Applications and Laser-Tissue Interactions VIII, 2017. - 104170V. (PDF, 363K)

3.32. Tarasov A.P., Egorov I., Rogatkin D.A. Study of extracerebral contamination for three cerebral oximeters by Monte Carlo simulation using CT data // Proc. SPIE, Vol. 10411, Clinical and Preclinical Optical Diagnostics, 2017. - 104110R. (PDF, 582K)

3.33. Petritskaya E., Ivlieva A., Lopatina M., Glazkov A., Rogatkin D. Additional quantitative criterion of the accurate selection of animals in Morris water maze // Proc. of the 2017 World Congress on Advances in Nano, Bio, Robotics and Energy (ANBRE17), September 2017, Ilsan(Seoul), Korea, W3D. (PDF, 434K)

3.34. Persheyev S., Rogatkin D. A new look at fundamentals of the photometric light transport and scattering theory. Part 1: One-Dimensional pure scattering problems // Herald of the Bauman Moscow State Technical University. Series Natural Sciences, No.5, 2017. - p.78-94. (PDF, 322K)

3.35. Persheyev S., Rogatkin D. A new look at fundamentals of the photometric light transport and scattering theory. Part 2: One-Dimensional scattering with absorption // Herald of the Bauman Moscow State Technical University. Series Natural Sciences, No.6, 2017. - p.65-78. (PDF, 363K)

3.36. Persheyev S., Rogatkin D. A new look at fundamentals of the photometric light transport and scattering theory. Part 3: Bridges to Multi-Dimensional Problems // Herald of the Bauman Moscow State Technical University. Series Natural Sciences, No.2, 2018. - p.60-72. (PDF, 310K)

3.37. Lapitan D., Rogatkin D., Persheyev S., Kotliar K. False spectra formation in the differential two-channel scheme of the laser Doppler flow meter // Biomedical Engineering/Biomedizinische Technik, v.63(4), 2018. - p.439-444. (PDF, 1265K)

3.38. Chursinova Y., Kulikov D., Rogatkin D., Raznitsyna I., Mosalskaya D. and Bobrov M. Optical Technology for Fibrotic Skin Changes Objectification in Experimental Systemic Scleroderma // Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - vol.1, BIODEVICES, 2018. - p.194-199. (PDF, 1734K)

3.39. Rogatkin D.A., Velikanov E.V. Essential technical and intellectual abilities for autonomous mobile service medical robots // Advances in Robotics Research, Vol.2, No.1, 2018. - p.59-68. (PDF, 1411K)

3.40. Raznitsyna I., Kulikova P., Rogatkin D., Kulikov D., Bychenkov O., Chursinova Yu., Bobrov M., Glazkov A. Fluorescence of radiation-induced tissue damage // International Journal of Radiation Biology, v.94, No.2, 2018. - p.166-173. (PDF, 2650K)

3.41. Raznitsyna I.A., Kulikova P.A., Glazkov A.A., Rogatkin D.A. Laser non-destructive technologies for verification of organs and tissues in minimally invasive and robot-assisted surgery // Photonics, v.12, No.5(73), 2018. - p.530-536. (PDF, 755K)

3.42. Lapitan D.G., Raznitsyn O.A. A method and a device prototype for noninvasive measurements of blood perfusion in a tissue // Instruments and Experimental Techniques, v.61(5), 2018. - p.745-750. (PDF, 1141K)

3.43. Kulikov D.A., Glazkov A.A., Dreval’ A.V., Kovaleva Yu.A., Rogatkin D.A., Molochkov A.V. Approaches to improve the predictive value of laser Doppler flowmetry in detection of micro-circulation disorders in diabetes mellitus // Clinical Hemorheology and Microcirculation, v.70, No.2, 2018. - p.173-179. (PDF, 495K)

3.44. Zinicovscaia I., Pavlov S.S., Frontasyeva M.V., Ivlieva A.L., Petritskaya E.N., Rogatkin D.A., Demin V.A. Accumulation of silver nanoparticles in mice tissues studied by neutron activation analysis // Journal of Radioanalytical and Nuclear Chemistry, Vol. 318(2), 2018. - p.985-989. (PDF, 434K)

3.45. Zinicovscaia I., Grozdov D., Yushin N., Ivlieva A., Petritskaya E., Rogatkin D. Neutron activation analysis as a tool for tracing the accumulation of silver nanoparticles in tissues of female mice and their offspring // Journal of Radioanalytical and Nuclear Chemistry, Vol. 322(2), 2019. - p.1079-1083. (PDF, 604K)

3.46. Chursinova Yu.V., Kulikov D.A., Rogatkin D.A., Raznitsyna I.A., Mosalskaya D.V., Bobrov M.A., Petritskaya E.N., Molochkov A.V. Laser fluorescent spectroscopy and optical tissue oximetry in diagnostics of skin fibrosis // Biomedical photonics, No. 1(8), 2019. - p.38-45. (PDF, 851K)

3.47. Tarasov A.P., Rogatkin D.A. Scattering Specific Characteristics of Continuous Medium for Monte Carlo Simulations of Light Transport in Turbid Biological Tissues // IEEE Xplore - Proceedings of the Conference "2019 Radiation and Scattering of Electromagnetic Waves RSEMW", 2019. - p.368-371. (PDF, 771K)

3.48. Raznitsyna I.A., Tarasov A.P., and Rogatkin D.A. An improved system for in vivo fluorescent analysis in medicine // Instruments and Experimental Techniques, Vol. 63(2), 2020. - p.267-272. (PDF, 938K)

3.49. Andreeva V., Raznitsyna I., Gerzhik A., Glazkov A., Makmatov-Rys M., Birlova E., Chursinova Yu., Bobrov M., Rogatkin D., Sipkin A., and Kulikov D. Laser fluorescence spectroscopy in predicting the formation of a keloid scar: preliminary results and the role of lipopigments // Biomedical Optics Express, Vol. 11(4), 2020. - p.1742-1751. (PDF, 700K)

3.50. Rogatkin D., Lapitan D., Persheyev S. Optical Non-invasive Flowmetry without Lasers and Coherent Light // Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020), Vol. 1. BIODEVICES, 2020. - p.215-220. (PDF, 1159K)

3.51. Makmatov-Rys M., Glazkov A., Raznitsyna I., Kulikov D., Molochkov A., Kaznacheeva E., Rogatkin D. Prospects for using laser fluorescence spectroscopy and optical oximetry for an objective assessment of the minimal erythema dose. // Proc. SPIE, Vol. 11457, 2020. Saratov Fall Meeting 2019: Optical and Nano-Technologies for Biology and Medicine, 114570A. (PDF, 561K)

3.52. Makmatov-Rys M., Raznitsyna I., Chursinova Yu., Mosalskaya D., Rogatkin D., Zulkarnaev A., Molochkov A., Kulikov D. Perspectives on using laser fluorescence spectroscopy in chronological skin ageing assessment. // Acta Dermatovenerologica, v.29, 2020. - p.77-79. (PDF, 8944K)

3.53. Lapitan, D. and Rogatkin, D. Optical incoherent technique for noninvasive assessment of blood flow in tissues: theoretical model and experimental study // Journal of Biophotonics, 2021. Accepted Author Manuscript e202000459. https://doi.org/10.1002/jbio.202000459 (PDF, 659K)

3.54. Kulikov A.V., Glazkova P.A., Kulikov D.A., Glazkov A.A., Terpigorev S.A., Rogatkin D.A., Shekhyan G.G., Makmatov-Rys M.B., Krasulina K.A., Paleev F.N. Reactivity of skin microcirculation as a biomarker of cardiovascular events. Pilot study. // Clinical Hemorheology and Microcirculation, v.78, №3, 2021. - p.247-257. (PDF, 659K)

3.55. Krasulina K.A., Glazkova P.A., Glazkov A.A., Kulikov D.A., Rogatkin D.A., Kovaleva Y.A., Bardeeva J.N., Dreval A.V. Reduced microvascular reactivity in patients with diabetic neuropathy. // Clinical Hemorheology and Microcirculation, v.79, №2, 2021. - p.335-346. (PDF, 659K)

3.56. Tarasov A.P., Persheyev S., Rogatkin D.A. Exact analytical solutions and corresponding Monte Carlo models for the problem of light transport in turbid media with smooth absorption and discrete scattering at the single scattering approximation. // Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, v.271, 107741. (PDF, 1689K)

3.57. Kulikov D., Makmatov-Rys M., Raznitsyna I., Glazkova P., Gerzhik A., Glazkov A., Andreeva V., Kassina D., Rogatkin D. Methods of Non-Invasive In Vivo Optical Diagnostics in the Assessment of Structural Changes in the Skin Induced by Ultraviolet Exposure in an Experimental Model. // Diagnostics, 2021, v.11, №8. - p.1464-14. (PDF, 52996K)

3.58. Rogatkin D. Biophotonic devices and technologies in problems of medical diagnostics. // Quantum Electronics, 2021, v.51, №5. - p.365. (PDF, 137K)

3.59. Tarasov A.P., Persheyev S, Rogatkin D.A. Analysis of the applicability of the classical probabilistic parameters of the Monte Carlo algorithm for problems of light transport in turbid biological media with continuous absorption and discrete scattering // Quantum Electronics, 2021, v.51, №5. - p.408-414. (PDF, 650K)

3.60. Tarasov A.P., Rogatkin D.A. Methodical notes on theoretical description of light propagation and scattering in turbid biological tissues. // 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW), 2021, pp. 31-34 (9494076). (PDF, 400K)

3.61. Tarasov A., Lapitan D., Rogatkin D. Combined Non-Invasive Optical Oximeter and Flowmeter with Basic Metrological Equipment // Photonics, 2022, No.9. - p.392. (PDF, 4056K)

3.62. Ivlieva A., Petritskaya E., Rogatkin D., Yushin N., Grozdov D., Vergel K., Zinicovscaia I. Does Nanosilver Have a Pronounced Toxic Effect on Humans? // Applied sciences, 2022, No.12. - p.3476. (PDF, 402K)

3.63. Rogatkin D.A., Tarasov A.P., On the scattering phase function of the infinitesimal scattering volume of turbid biological media. // 2022 International Conference Laser Optics (ICLO), 2022, pp.01-01 (9840062). (PDF, 400K)

3.64. Lapitan D.G., Tarasov A.P., Rogatkin D.A. Justification of the Photoplethysmography Sensor Configuration by Monte Carlo Modeling of the Pulse Waveform. // Journal of Biomedical Photonics & Engineering, 2022, 8(3). - p.030306. (PDF, 3341K)

3.65. Glazkova P., Glazkov A., Kulikov D., Zagarov S., Kovaleva Yu., Babenko A., Kononova Yu., Kitaeva E., Britvin T., Mazur N., Larkov R., Rogatkin D. Incoherent Optical Fluctuation Flowmetry: A New Method for the Assessment of Foot Perfusion in Patients with Diabetes-Related Lower-Extremity Complications. // Diagnostics, 2022, 12. - p.2922. (PDF, 2014K)

3.66. Glazkov A.A., Glazkova P.A., Rjvaleva Yu.A., Babenko A.Yu., Kononova Yu.A., Kitaeva E.A., Kulikov D.A., Lapitan D.G., Rogatkin D.A. Ratio of Perfusion in the Skin of the Index Finger and Big Toe in Patients with Type 2 Diabetes Mellitus. // Human Physiology, 2022, 48(6). - p.740-747. (PDF, 1147K)

3.67. Lapitan D.G., Tarasov A.P., Rogatkin D.A. Dependence of the Registered Blood Flow in Incoherent Optical Fluctuation Flowmetry on the Mean Photon Path Length in a Tissue. // Photonics, 2023, 10. - p.190. (PDF, 1542K)

3.68. Glazkov A., Krasulina K., Glazkova P., Tarasov A., Lapitan D., Kovaleva Y., Rogatkin D. Detection of Cutaneous Blood Flow Changes Associated with Diabetic Microangiopathies in Type 2 Diabetes Patients Using Incoherent Optical Fluctuation Flowmetry. // Photonics, 2023, 10. - p.442. (PDF, 938K)

3.69. Ivlieva A.L., Petritskaya E.N., Rogatkin D.A., Zinicovscaia I., Yushin N., Grozdov D. Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. // International Journal of Molecular Sciences, 2023, 24. - p.8962. (PDF, 1312K)

3.70. Glazkova P., Glazkov A., Kulikov D., Lapitan D., Zagarov S., Larkov R., Babenko A., Kononova Yu., Kovaleva Yu., Kitaeva E., Mazur N., Britvin T., Rogatkin D. Incoherent optical fluctuation flowmetry for detecting limbs with hemodynamically significant stenoses in patients with type 2 diabetes. // Endocrine, 2023, 82. - p.550-559. (PDF, 3110K)

3.71. Tarasov A.P., Shtyflyuk M.E., Rogatkin D.A. Theoretical substantiation of the possibility of performing non-damaging UV diagnostics of biological tissues in vivo. // Photonics, 2023, 10. - p.1289. (PDF, 3906K)